Arama Sonuçları..

Toplam 2 kayıt bulundu.

UZAKTAN EĞİTİM 7/24 ÖĞRENME İMKANI VERİR

Koronavirüs salgını nedeniyle Boğaziçi Üniversitesi’nde tüm derslerde uzaktan eğitim 6 Nisan’da başladı. Türkiye genelinde yükseköğretim kurumları ile ilk ve ortaöğretim düzeyinde de uzaktan eğitimler devam ediyor. Boğaziçi Üniversitesi Bilgisayar Mühendisliği Bölümü Öğretim Üyesi Prof. Dr. Tuna Tuğcu ve ekibi ise 16 yılda 20 binden fazla öğrencisine kendi geliştirdikleri özgün sistemle programlama öğretmeyi başardı. 2004’ten beri geliştirilmekte olan sistem sayesinde aynı anda yüzlerce öğrenci interaktif olarak programlama öğrenebiliyor. Sorularımızı yanıtlayan Prof. Tuğcu, çevrimiçi (online) eğitimin 7/24 öğrenme fırsatı sunduğunu belirterek, “İyi kurgulanmış çevrimiçi eğitim sayesinde öğrenciler istedikleri an ve istedikleri her yerde öğrenebilir. Çevrimiçi eğitim içeriğin canlı ve interaktif (etkileşimli) olmasını sağladığı için hem uzaktan eğitim hem de yüz yüze örgün eğitimi güçlendiriyor. Geliştirdiğimiz sistem sadece üniversite değil, ilk ve ortaöğretim düzeyinde de programlama eğitiminde niteliği artırabilir. Bunun için elimizde iyi bir örnek var” diyor. Boğaziçi Üniversitesi’nde 2020 Bahar dönemi eğitim ve öğretim faaliyetleri 33 lisans ve 67 lisansüstü programda kayıtlı 15.692 öğrenciye uzaktan eğitim yöntemleri ile yapılacak şekilde tasarlandı. 6 Nisan'da başlayan çevrimiçi eğitimlerin geliştirilmesine katkı sağlayan ve üniversitedeki programlama derslerini 2004’te uzaktan eğitime taşıyan bilgisayar mühendisliği bölümü öğretim üyesi Prof. Dr. Tuna Tuğcu, bu alanda uzman bir bilim insanı. "Programlamaya Giriş" ile "Nesne Tabanlı Programlama" dersleri için geliştirdiği çevrimiçi sistemle aynı anda yüzlerce katılımcıya interaktif eğitim olanağı sağlayan Prof. Tuğcu, 16 yılda 20 binin üzerinde öğrenciye programlama öğretti. Boğaziçi Üniversitesi Kurumsal İletişim Ofisi’nin sorularını telekonferans yöntemiyle yanıtlayan bilim insanı, uzaktan eğitim ve geliştirdiği sistemi şöyle anlatıyor: “SİSTEMİ GELİŞTİRMEYE 2004’TE BAŞLADIK”2004’te Programlamaya Giriş dersini ilk kez uzaktan eğitimle vermeye başladım. Sistemin ilk jenerasyonu sadece C dili sınavlarındaki öğrenci yanıtlarını otomatik notlandırmayı sağlıyordu. 2007’de geçtiğimiz web tabanlı ikinci jenerasyon sistem ise tüm dünyada türünün ilk örneğiydi. Dağhan Dinç’in büyük emekleriyle geliştirdiğimiz “Online Compiler” isimli bu sistem öğrencilerin evde ve okulda sürekli kullanabildikleri, içerik içinde derlenebilen örnek kodları barındıran bir sistemdi. 2013’teyse öğrencilerimizin evlerinde bilgisayar ve internet imkanlarının gelişmesiyle çevrimiçi ve çevrimdışı çalışabilen ve sektörde yoğun kullanılan Eclipse geliştirme ortamına gömülü üçüncü jenerasyon Teaching.Codes sistemini geliştirdik. "Teaching.Codes" ile "C/C++" dilinin yanı sıra "Java", "Python", "Ruby", "NodeJS", "Go", "Perl" ve "R" gibi popüler dilleri de destekliyoruz. Bu sistemde öğrencilerimiz aynı uygulamanın içinden hem ders içeriğine ulaşıyor hem de tek tuşa dokunarak uygulamanın içindeki canlı örneği kendi bilgisayarına indirip Eclipse’e transfer edip otomatik olarak dersin hocasının anlatmakta olduğu dosyayı açmış ve hocanın anlatmakta olduğu satıra odaklanmış oluyor. Bütün bunların tek tuşla yapılıyor olması büyük sınıflarda örneğe geçerken her öğrencinin farklı bir sorun yaşaması ve derste dikkatin dağılmasının önüne geçiyor.Ayrıca ders içeriği içinde yanıtı gizleme ve gösterme, hatırlamak için başka bir bölüme atlayıp kalınan sayfaya geri dönme gibi basit görünen ama derste öğrencinin dikkatinin dağılmamasını ve öğretimi kolaylaştırıcı özellikler içeren canlı içerik eğitimin kalitesini artırıyor.  "HER HAFTA 450 ÖĞRENCİYE QUİZ VERİYORUZ"Teaching.Codes ayrıca yüzlerce öğrenciye aynı anda sınav veya quiz (küçük sınav) yapma ve yanıtları otomatik notlandırma imkanı sağladığı için hem öğretim üyesinin araştırmaya da vakit bulmasına fırsat veriyor hem de yüzlerce hatta binlerce kişiye ders anlatma imkanı sağlıyor. Giriş Programlama dersimizde her hafta 450 öğrenciye quiz veriyoruz. Bu 450 öğrencinin sınavlarının değerlendirilip her öğrencinin her sınavı için ayrı ve oldukça detaylı karneler üretmemiz ise toplam 20 dakika sürüyor. Yaptığımız birçok quiz ile hem öğrencilerimizin üzerindeki sınav baskısı azalıyor, hem de programlamayı daha iyi öğrenmeleri sağlanıyor. Sınavlar da sistem tarafından değerlendirildiği ve detaylı karne ile tüm hatalar gösterildiği için öğrenciler sınav sonuçlarını daha az sorguluyor. Ayrıca sınav sırasında öğrencilere her soru için test senaryoları da verdiğimiz için sınavları öğrenci için bir öğrenme tecrübesine çeviriyoruz. "SİSTEMİMİZ TÜRKİYE ÖRNEK OLABİLİR"Uzun yıllardır uzaktan programlama eğitim konusunda çalışıyorum. Geliştirdiğimiz üçüncü nesil sistemimiz, üniversitelerimiz ile ilk ve ortaöğretim düzeyinde de iyi bir örnek olabilir. Türkiye’de tüm üniversitelerde olmadığı gibi, tüm ilk ve ortaöğretim okullarında da eğitim kalitesi aynı seviyede değil. Boğaziçi’nde programlama derslerinde kullandığımız bu sistem, her yerde programlama eğitiminde kalitenin artmasını ve ülke çapında homojen olmasını sağlayacaktır. Bunun için elimizde iyi bir örnek var ve değerlendirilebilir. "UZAKTAN EĞİTİM YENİ FIRSATLAR SUNACAK"Boğaziçi’nde de Koronavirüs salgını nedeniyle tüm dersler uzaktan eğitim kapsamına alındı. Uzaktan eğitimle ilgili öğrenci ve eğitimcilerde soru işaretleri olabiliyor. Ben çevrimiçi eğitim ile yüz yüze eğitimin bir arada olduğunda en iyi verimin alındığını düşünüyorum. Yüz yüze eğitimin duraklaması öğrencilerimle ders sonrasında dersliğin önünden sohbet etme imkanımızı kaldırdı. Ancak uzaktan eğitimle öğrencilerimize 7/24 öğrenme fırsatı sunmuş oluyoruz. Yüz yüze ders birkaç saat sürerken, uzaktan eğitim sabaha karşı saat 3’te bile çalışmanızı sağlayabiliyor. Uzaktan eğitim doğru altyapı ve içerikle tasarlandığında çok değerli  imkanlar sunabilir. Boğaziçi’nde başlayan uzaktan eğitim döneminin de öğrencilerimize yeni fırsatlar sunacağını düşünüyorum.  15/04/2020   

https://yapex.com/uzaktan-egitim-724-ogrenme-imkani-verir

YAPAY ZEKA AŞI GELİŞTİRMEDE NASIL DAHA FAZLA HIZ VE DOĞRULUK SAĞLAYABİLİR?

Tıp alanında son otuz yılda muazzam gelişmeler olsa da insan vücudu hakkında hala henüz keşfetmediğimiz çok şey var. Sağlık sektörünün misyonu bu nedenle tıp alanındaki kolektif anlayışımızın ön cephesinde sürekli şekilde denemeler yapmaktır. Bulaşıcı hastalıklara karşı atılacak adımlar bunun sadece bir tarafı fakat küresel sağlık ve yaşam beklentisini iyileştirmek açısından çok önemli bir bölümü kapsıyor.Akut hastalıkları kronik hastalıklardan ayıran en önemli konu aciliyet durumudur. Yeni bir tür hastalık ortaya çıktığında hastalığın viral doğası, modern toplumların birbiriyle olan bağlantısallığıyla birlikte tedavi gerektiren vaka sayılarında katlanarak ilerleyen çok hızlı artışlara neden olabilir. Bu hem hükümetlerin hem de sağlık altyapılarının üzerinde çok ciddi bir baskı oluşturur. Çünkü normal sosyal ve ekonomik yaşan tekrar devam edebilsin diye salgının yayılmasını önleyici tedbirler alınması gerekir ve tedaviler uygulanmak zorundadır. İlaç sektörü şirketleri burada çok kritik bir rol oynuyor. Yapay zeka (AI) ve diğer gelişmiş analitik teknolojilerin kullanımı sayesinde ilaç şirketleri tedavilerin geliştirilmesi ve yaygınlaştırılmasına giden süreci hızla ivmelendirebilir. Aşı geliştirme sürecine hangi aşamalar dahil? Bulaşıcı hastalıkların yarattığı aciliyet durumu bir aşı bulunmasına yönelik süreçleri kendiliğinden hızlandırıyor. Sağlık profesyonellerine etkin bir tedaviyi olabildiğince hızlı ulaştırma ihtiyacı ve buna bağlı olarak hızlı adımlar atılmasına yönelik ihtiyaç, araştırmacılar ve doktorlardan düzenleyici otoriteler ve üreticilere birçok kurumu birleştiriyor ve harekete geçiriyor. Bu gruplar yorulmadan ve kararlı bir hedef için çalışsa bile aşı geliştirmenin tüm süreçleri yılları bulabiliyor. Bir tedavinin piyasaya sunulmaya hazır hale gelmesinden önce birçok adım var. Bu adımlar şöyle: Araştırma aşaması; Aday aşıların kısa listeye alınması için binlerce bileşenle yapılan çalışmalar ve bağışıklığın nasıl tepki verdiğine ilişkin araştırmalarKlinik deney öncesi aşama; Gerekli antijenlerin belirlenmesi ve aşı konsept ve tasarımına dönüşmesi için yapılan laboratuvar analizleriKlinik geliştirme; aşının farklı karakterdeki test grupları üzerinde denenmesiOtoritelerin gözden geçirmesi ve onayı; aşının güvenliğinin onaylanması ve sağlık düzenlemeleriyle uyumunun teyit edilmesiÜretim ve kalite kontrol; kitlesel dağıtıma hazırlık için aşının geliştirilmesiÜretilen aşının etkinliği ve güvenliğini sağlamak, yan etkilerinin düzgün bir şekilde anlaşılması ve hastalık riski yeterli oranda minimize edilene kadar tutarlı ve ölçeklendirilebilir şekilde üretilebilmesi için tüm bu adımlar şart. Geçmişte bu sürecin karmaşıklığı, düzenlemeler ve her bir aşamadaki maliyetler ortaya çıkan sağlık sorunlarına verilen tepkileri yavaşlattı. Şimdi yapak zeka alanındaki gelişmiş teknolojiler sayesinde tedavileri sahaya ulaştırdığımız süreçleri hızlandırma fırsatımız var. AI bu sürece nasıl katkı sağlayabilir? Aşı geliştirilmesi gibi karmaşık bir konuda geceden sabaha bir gelişmeyi asla bekleyemeyiz. Fakat bu süreci aksatan bazı kısıtları ve darboğazları ortadan kaldırmak konusunda bir şeyler yapabiliriz. Veri analitiği otomasyonundaki gelişmeler ve her bir keşif safhasında ne olduğuna ilişkin görselleştirmelerin iyileştirilmesi bazı verimsizlikleri ortadan kaldırabilir, aşı geliştirme sürecini hızlandırmaya yardımcı olabilir ve yüksek ölçekte üretim için operasyonları kolaylaştırabilir. İşte her aşamada AI teknolojilerinin oynayabileceği roller: Araştırma/klinik deney öncesiİlaç keşfinin ilk fazları genelde daha önceki çalışmaları ve tedavileri temel alarak aday aşıları filtreleme süreci içerir. Araştırmacılar muazzam büyüklükteki dijital veri kütüphanelerini işlemek için AI kullanabilirler (binlerce ilaç bileşeninin özelliklerini analiz etmek gibi adımlarda). Ve potansiyel tedavi adaylarına giden bu süreçte manuel işlemlerden çok daha kesinlik sağlanacaktır. AI bu aşamalarda karmaşık insan verisinden oluşan DNA dizilimleri için de kullanılarak klinisyenlerin genetik uyum ve bağışıklık tepkisi testlerini yapmalarına olanak sağlar. Klinik geliştirme ve deneylerUygun bileşenler belirlendikten sonra süreç bu bileşenleri test etmeye geliyor. Farklı hastalar yaş ve tıbbi geçmiş gibi farklı etkenler nedeniyle tedavilere farklı tepkiler gösterir. Bu nedenle testler hastaların tedaviye kötü bir tepki verebileceği marjinal vakaları dahi kapsayacak kadar kapsamlı olmalıdır. Derin öğrenme algoritmaları konusunda öğrenim görerek araştırmacılar bu testleri de daha önce hayal bile edilemeyecek hızda gerçekleştirebilirler - aday aşıyı fiziksel olarak denek hastalara uygulamadan önce dahi testler yapılabilir. Bu algoritmalar bulaşıcı hastalıklarla savaşacak antikorları belirlemek ve örneklendirmek için de kullanılabilir - hız ve maliyette ciddi iyileşmeler de sağlayarak. Gelişmiş analitik ve veri görselleştirme ile insan vücudunun potansiyel aşıya olan tepkisi daha hızlı belirlenerek testlerin daha hızlı olması sağlanabilir ve daha düşük hata oranlarıyla daha karmaşık analizler yapılabilir.  Üretim ve QAAşı ürünlerinde otorite onaylarından sonra, aşının dünya genelinde hastane ve kliniklere dağıtılmak üzere geliştirilmesi için bir yarış başlar. Bu safhanın, aşıyı üreten üreticiler üzerinde ciddi operasyonel sonuçları olur, üretim kapasitesi, ürün kalitesi ve optimum ambalaj çözümü gibi konularda çok hızlı kararlar verilmesi gerekir. AI ve sensör temelli teknolojilerin gücünü birleştirerek üreticiler granüler (taneli) verileri geniş tedarik zincirinde verime dönüştürebilirler. Bu sayede üretim sürecindeki talep-arz uyumsuzluklarından kaçınılmış olur ve ürünlerin dağıtım sırasında bozulma riski minimize edilir. İhtiyaç anında daha hızlı tedavilerBir virüs salgını politika yapıcılarından sağlık otoritelerine, doktorlardan üreticilere kamu sağlığı yönetimindeki herkes için benzeri görülmemiş zorluklar teşkil edebilir. Politika yapıcılar ve sağlık otoriteleri enfeksiyonun testi için hızlı eyleme geçebilirken, doktorlar ve üreticiler ise daha hızlı tedavi sunma baskısı altındadır. Bir aşı geliştirilmesi sürecinde yeni verimlilikler elde etmek belirli vakaların tedavilerinde kayda değer fark yaratarak sağlık altyapıları üzerindeki baskıyı azaltabilir ve daha iyi iyileşme oranlarına katkı sağlar. AI yetkinlikleri aşı/tedavi geliştirme tarafındaki oyuncuların baskı altında daha hızlı eyleme geçebilmesine olanak sağlar. Derin öğrenme gibi teknikler ve gelişmiş veri görselleştirme gibi teknolojiler yeni virüslere uygun tedavileri araştırırken karşılaşılan karmaşıklıkların giderilmesine olanak sağlar ve mevcut araştırmaları dayanak almaları sürecini kolaylaştırır. Üretim ve dağıtım tarafında da AI kullanımıyla faydalar sağlanabilir; Üreticiler ilaçların bu kadar belirsiz koşulların olduğu bir durumda bile piyasaya hızlı bir şekilde ulaştırılmasında çok önemli bir rol oynar. İlaç üretiminde AI’nin rolü hakkında daha fazla bilgi almak için www.rockwellautomation.com    

https://yapex.com/yapay-zeka-asi-gelistirmede-nasil-daha-fazla-hiz-ve-dogruluk-saglayabilir

 
3WTURK CMS v6.03WTURK CMS v6.0